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1. Partial derivatives

The concept of partial derivative plays a vital role in differential calculus. The different
ways of limit discussed in the previous section, yields different type of partial derivatives
of a function.

1.1. Definitions. Consider a real valued function z = f(z,y) defined on EF C R? such
that F contains a neighbourhood of (a,b) € R?. Let Aa be a change in a. If the limit,
lim f(a + ACL, b) B f(a’v b)
Aa—0 Aa

exists, then it is called the partial derivative of f with respect to x at (a,b) and is denoted
by % or f.(a,b) or z;(a,b). Similarly, let Ab be a change in b. If the limit,

|@.b)
. f(a,b—l—Ab)—f(a,b)
Al}glo Ab

exists, then it is called the partial derivative of f with respect to y at (a,b) and is denoted
by g—{j or fy(a,b) or z,(a,b).

(a,b)

Notations. If the partial derivatives f, and f, exist at each point of E, then they are
also the real valued functions on F. Further, we can obtain the partial derivatives of these
functions, if they are differentiable. In these cases, we fix up the following notations.

L Of 0 [of L Of 0 [(of
oo =35 () o~y (o)

LB 0 (08 oo (o
VP 0x0y  0x \ Oy )’ W Oyor Oy \Ox )

The notations of derivatives of order greater than two should be clear from the above

pattern.

1.2. Remark. As we have seen in the above example, in general, f,, and f,, need not be
equal, even if they exist. The following proposition gives a sufficient condition for them to
be equal. We accept it without proof. However, we shall be dealing only with the functions
f for which these two are equal.



1.3. Proposition. Consider a real valued function z = f(x,y) defined on E C R? such
that E contains a neighbourhood of (a,b) € R?. If f,, and f,. exist and are continuous,

then fry = fya-

Throughout this chapter our blanket assumption will be that the operation of taking
partial derivatives is commutative. That is, for our function f of two variables, f,, =
fyz- In general, we may assume that the second derivatives of functions exists and are
continuous, so that, the Proposition 1.3 ensures our requirement.

1.4. Example. For u = 23 — 3292, prove that % + 3273 = 0. Also prove that %gy = %.

SOLUTION. Here u = 2® — 3zy?. Hence,

ou o Ou - Pu _ %u
or 37 =3y oy by oxdy © Oyox
0%u 0%u
Hence,
Pu 0%u 0% 0%u

2. Homogeneous functions

Let us observe the following expressions carefully.
(1) filz,y) = 2?y* — 2%y° + 2y,
(2) folz,y) = a'y! — 2%y + 2%
The combined degree of x and y in each term of the first expression is 6 and that in the
second expression is 8. Can we determine whether the combined degree of x and y in each

term of the expression JTy‘l is same or not? It seems difficult to determine. Let us develop
the following tests.

Test 1: Let us take t = £. Then
and
x4y4 _ I5y3 _|_ x6y2 — .T8<t4 _ tS + t2) — $89<t>7
where f and ¢ are functions of one variable t.
Test 2: Now, let us replace x by tz and y by ty. Then

filte, ty) = (tx)?(ty)" — (to)* (ty)® + (tz)(ty)® =t f1(2,y)
and

fo(te, ty) = (tx)* (ty)* — (t2)° (ty)® + (tx)°(ty)* = t* fa(z, y).

2.1. Definitions. A function z = f(z,y) is said to be a homogeneous function of degree r,
if f(tz,ty) =t" f(x,y) for some real number r. Otherwise, f is said to be a nonhomogeneous
function.



2. Homogeneous functions 3

2.2. Example. Let f: R*\ {(z,y) : y = —2} — R defined by f(z,y) = 22, Then prove
that f is a homogeneous function of degree 0 and f, and f, exist at each point of the
domain.

SoLUTION. Clearly, f(tz,ty) = f(z,y) = t°f(x,y). Thus f is a homogeneous function of
degree 0. Now for any (z,y) € R? with x + y # 0, we have,

ety - (z—y)(d) 2
and
@ty =) —(z—-yd) = 2z
fy(ZU,y) = (x_i_y)Q - (iL‘—i-y)Q'

g

2.3. Example. [ : R?\ {(0,0)} — R defined by f(z,y) = ViU s o homogeneous

:c3+y3
function of degree —%.
2.4. Theorem (Euler’s Theorem). State and prove Euler’s Theorem
Statement : Let z = f(x,y) be a real valued function defined on E C R%. Suppose that f

is a homogeneous function of degree n. If f, and f, exist on E, then

0: | 0 _
Tor y@y_n

PROOF. Since z = f(z,y) is a homogeneous function of z,y of degree n, we can write

z = f(x,y) =2"g (g) ) (2.4.2)

T

z. (2.4.1)

Differentiating (2.4.2) partially with respect to x, we get,
0
e (2) 5 () ().
ox x x x2

0z y 1, y)
— =naz"g|(=) — 2" ). 2.4.3
x@x neg (a:) ©u (x ( )
Similarly, differentiating (2.4.2) partially with respect to y, we get,

Hence,

Hence,
P2yl (g) . (2.4.4)

This completes the proof. U

We note that the converse of Euler’s Theorem also holds. That is, if a function
z = f(x,y) satisfies (2.4.1), on a certain domain, then it must be homogeneous on that
domain.



2.5. Remark. Now onwards we shall not mention the domain of the functions under
discussion. Also, whenever we use the derivatives of functions under discussion, we assume
them to be sufficiently many times differentiable.

2.6. Corollary. Let z = f(z,y) be a real valued function defined on E C R%. Suppose that

f is a homogeneous function of degree n and that all the second order partial derivatives
of f exist and are continuous. Then prove that

822 Lo 0z N ,0%2

l’ [

o2 T Yooy Y 92

=n(n—1)z.

PROOF. Since z = f(z,y) is a homogeneous function of z,y of degree n, by Euler’s Theo-
rem,

0z 0z
a:%—i- ay =nz. (2.6.1)

Differentiating (2.6.1) partially with respect to x, we have,

x&—i-az—l— &z —n%
822 0z ' Yozdy oz’

which, on multiplication by x, gives

3528_22' + x% +x 0 x%
Ox? Ox yaxﬁy ox’
Hence,
0%z 0%z 0z
2 =(n—1)r—. 2.6.2
¥ a2 +my8:n(3y (n >xaa: (262)

Similarly, differentiating (2.6.1) partially with respect to y and then multiplying the result
by y, we get,

0%z N 0%z (n—1) 0z
x =n-1y—.
4 Oy? y@y@m y@y
z 5%
Since 801@ = a(;%, we get,
02z 02z 0z
2 =(n—1)y—. 2.6.3
R (n )yay (2.6.3)
By adding (2.6.2) and (2.6.3) we have,
, 022 0?2 0%z 0z 0Oz
a2+ Yooy Y o (n )<$8:U+y8y) n(n—1)z
This completes the proof. O

2.7. Corollary. Let u = u(x,y) be a nonhomogeneous real valued function defined on
E CR? and z = ¢(u) be homogeneous function of degree n. Then prove that

3u ou o(u)
tye =nl <,
Yor oy T o)

provided ¢'(u) # 0 for any (x,y) € E.
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PROOF. Since z = p(u) is a homogeneous function of x,y of degree n, by Euler’s Theorem
we have,

x%+ %—nz—n (u)
ox y@y_ -

= (g vo(pgy) =net =« (50) < (3) =565

2.8. Corollary. (Only statement)Let u = u(x,y) be a nonhomogeneous real valued function
defined on E C R? and z = ¢(u) be homogeneous function of degree n. Then prove that

P*u 0*u 0*u
2_ 2 2 — / _ 1

where Y(u) = n;’,(&)), provided ¢'(u) # 0 for any (x,y) € E.

2.9. Example. For the following functions, verify Euler’s Theorem and find
xz% + 21:3/% + y2giy§.

(1) z=a"log (¥).

(2) z= sinfl(g) + tan~' ().

SOLUTION. (1) Clearly, z is a homogeneous function of degree n.

0
9% _ gt log (Q) + i (—i) =nz"'log (g) — "t
Ox x x? x

Y
= x% = nz" log (%) — "
Also,
dz [« Ly " oz
oy " (y> (fc) Ty Ty T
Hence,
0z 0z

B + ya—y = nx" log (%) =nz.

Thus Euler’s Theorem is verified.
By the Corollary 2.6,

, 0%z 4o 0%z N ,0%2
' — + 2z
0x? y@x@y 4 0y?

=n(n—1)z.

2) Replacing = by tz and y by ty, f(tz, ty) = sin_l(i) + tan™' (%) = t°f(x,y). Thus
z = f(z,y) is a homogeneous function of degree 0. Now,

0z 1 1 n 1 -y\ 1 Y
or 1— 2 \Y 14_2_2 2 ) - 22+ y?
y

0z T T
=1 = i

or  \Jp—22 D+




Also,
0z 1 (—x) 1 (1) B -z x
dy -z y? 1+5 \e) yy2—a? 224y’
N 0z —x n Ty
Hence,
0z 0z 0
r— +y— =0.
oz Yoy

Thus Euler’s Theorem is verified.
By the Corollary 2.6,

0%z 0%z 0%z
22" 19 2 = — 1z =
S + azyaxay +vy oy n(n—1)z =0,

as n = 0. O

2.10. Example. If u = sin_l(if’; ), then prove the following.

(1) 22 + y% = 3tanu.

(2) 2?24 4 Qxyaa;gy + y”{%{ = 3tanu(3sec’u — 1).

1 a2y : . :
SOLUTION. Here u = sin™'(Z%) is not a homogeneous function of x,y. Writing the given

r+y
equation differently, we have sinu = f_f; Let z = ¢(u) = sinu. Then z = ‘f—f’;, which is
homogeneous of degree 3. Hence by Corollary 2.7, :c% + yg—;‘ = 3:’,((1;)) = 3123 = 3tanu,
which proves (1). Also, by Corollary 2.8, we have,
o? 0? o?
2222 Y22~ 3tanu[3sectu — 1],

2
0x? + xyamay 0y?

3. Theorem on total differentials

Throughout this section we consider only those functions of two variables that admit
continuous partial derivatives on their domain of definition. That is, if we are discussing
about a function z = f(z,y), then f,, f, exist and are continuous on the domain of f.

3.1. Theorem. ( Only statement ) Let z = f(x,y) be defined on E. Then

4. Differentiation of composite functions

In this section we shall study the differentiation of composite functions. Let z =
f(z,y) be function defined on £ C R?. In turn one can have z = ¢(t) and y = (t),
t € F C R. This makes f a function of one independent variable ¢. That is,

te F s (0(t), (1) € E > f(8(1), ().

The following theorem describes the differentiation of f with respect to ¢ in this situation.
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4.1. Theorem. ( Only statement ) Let z = ( y) be function defined on E C R* and

r=0¢(), y=1¢(t), t e F CR. Thenprovetha . giﬁf—l—gifg

To extend Theorem 4.1 for functions of three variables, let u = f(x,y, z) be a function
of three variables with x = z(t), y = y(t) and z = z(¢). Then

du  Odudr 4 ou ou dy Ou dz
dt ~ Oz dt dy dt 9z dt

5. Change of variables

Like the composite functions we can also consider the following situation. Let z =
f(z,y) be function defined on £ C R? and let there be another domain F' C R? such that
for each (x,y) € E, x = ¢(u,v), y = ¥(u,v), (u,v) € F C R% This is nothing but the
change of variable. In this case, the following theorem describes the partial derivatives of
f with respect to u and v.

Now we prove Euler’s Theorem for three variables. The homogeneous functions of
more than two variables are defined as in Definition 2.1. More explicitly, a function H =
f(x1,29,...,2,) of n variables is called homogeneous if there exists r € R such that
for f(txy,txy, ... tx,) = t"f(x1,22,...,2,) for all ¢ € R. In this case, the degree of
homogeneity of H is r.

5.1. Theorem (Euler’s Theorem for Three variables). Let H = f(x,y, 2) be a real valued
homogeneous function of three variables x,y,z of degree n defined on E C R>. If fu, [y,
f. exist on E, then prove that

— 4+ y— +2— =nH. 5.1.1
T +y ay +z 5, — " ( )
PROOF. Since H = f(z,y, z) is homogeneous function of degree n
H=1"p(£,2) = "p(u,v),
x' T
where u = £ and v = 2. Hence,
oH n [ OpOu  Op du
e M elu )t {au o " v or
- n|_ YO =00
=na" p(u,v) +x { 25, 2 8@}
0 0
— nx”_lgo(u, ’U) _ l,n—an_fL n—QZa_f
0 0
ST - =nT "o(u,v) — 2" 1ya<5 — x”’lza—f. (5.1.2)

Now,
OH | |0p0du 0Opdv| 10¢ dp|  ,_10p
oy = [8u8y+8vay] v Lcau—i_ av| ~ "

oH n—1 8g0

L o W 1.
Yoy = Yoy (5.1.3)



Similarly,
z%—lj = x"lzg—f. (5.1.4)
Adding (5.1.2), (5.1.3) and (5.1.4) we have,
OH O0H 0H "
T + ya—y + 2y, =TT o(u,v) =nH.
This completes the proof. O

As noted in case of the functions of two variables, here also we recall that the converse
of Euler’s Theorem also holds. That is, if a function z = f(z,y) satisfies (5.1.1), on a certain
domain, then it must be homogeneous on that domain.

5.2. Example. Find dd—j when z = sin~!(x — ), x = 3t, y = 4t>. Also verify by the direct
substitution.

SOLUTION.
dz 8zd_x 0z @

at  ordi oyt
1 1 5
= -3 - 12t
V1—(z—y)? 1—(z—y)?
3(1 — 4¢?)
RYUEICED:
B 3(1 — 4¢?)
/1= (3t — 413)?
3(1 — 4t%)
/=3t 483)(1 + 3t — 483)
3(1 — 4t?) 3
VA —2)(1 -4 V12
On the other hand, verifying directly by putting the values of z and y in z, we have
z = sin (3t — 41%)
dz (3 —12t%) 3(1—4t) 3

Tt V1= (3t — 413)2 N VI-(Bt—4)?  V1-12

5.3. Example. If z = f(z,y), v = rcosf, y = rsinf, then prove that

7 -5l -l =[5

ox dy or r2 00|

SOLUTION. Here x,y are functions of r,6. Hence z is a composite function of r, 6. Thus,
% = %% + %@ = COSQ% +sin9%
or OxOdr 0Oyor ox dy

9z1" ., [0277 0z 0z , . [02]°
021" _ 0z - 9297 L an2o |9F| 3.1
= [07“} cos 0[(‘%} +28m9€0898x8y+sm Q[Qy} (5.3.1)
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Also,
0z _ 0z0u + 920y _ —rsiHQ% —i—rcose%
00  0x 00  Oyos ox oy
9z1> ., [92]° 5 . 020z , o [02]°
= [%} =17r"sin”0 [%] —2r SIDQCOSQ%a—y—FT cos” 6 [a—y}
1 (0217, [02]° , 0z 0z , . [92]7
= [—6} = sin“ 6 [%} —281n«9008«98—$a—y+008 6 [a—y} . (5.3.2)

Adding (5.3.1) and

—~

5.3.2) we get,
o1 Lo _ o], o)’
or r2 |00] | ox dy|

5.4. Example. If H = f(2x — 3y, 3y — 42,4z — 2z), then prove that
18H+ 1(9H+ 10H
20r 30y 40z

SOLUTION. Let u =2z — 3y, v = 3y — 4z, w = 4z — 2x. Then H = f(u,v,w). Hence H

is a composite function of x,y, z. Therefore,

OH _oHou 0HOv 0HOw ,0H | (9H 0 _0H 0H
or  Oudr Ovdxr Owodxr  Ou ov ow  Ou ow’ o

Also,

0.

a_H—a_H%+a_H@+a_Ha_w—_38_H+30_H+06_H—_38_H+38_H (542)

dy Oudy Ovdy Owdy  Ou ov ow Ou ov o
Finally,

OH OHOou OHOw OHOw OH O0H 0H OH  OH

92 ouds 0o Towo: Yar Yoo Tiow T Yo Tlae B9
Hence,

10H 10H 10H OH O0H OH OH OH OH

20r 30y 40z ou dw ou o av ow Y

g

_ — — ; of _
5.85;. Exaejlcmple. If 2 = f(r,y) and u = e"cosy, v = e”siny. Then prove that 3= =
SOLUTION. u = e*cosy, v = e*siny. Hence,
1
Wt = = =Vl =1 = élog(u2+v2).
Also,
v _
o= tany = y = tan~"(2).
Thus z,y are functions of u, v, and so, z is a composite function of u,v. Now,

o _Ofoe 0o O u ] A o]

ou  Oxdu  Oyou Ox |u®+ 02 +8y u? 4+ v?
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of u? of uv of
or _ 9 _ 95 5.5.1
= “ou [uQ +v2} O Lﬂ +v2} Oy ooy
Similarly,
of v? of w | df
or _ 9 a5 5.5.2
Yo {UQHJQ} ow " [u2+v2} dy 552
Adding (5.5.1) and (5.5.2) we get, uld + v — 2L =

6. Differentiation of implicit functions

Many a times we are given an expression f(z,y) = ¢, where ¢ € R is a constant.
Note here that, x and y are associated by a rule however we may not be able to write y

as a function of x. In this case, we say that y is a function of z, implicitly described by

f(z,y) = c or y is an implicit function of x. We obtain the method of calculating j—g and
3272 using the tools of partial derivatives.

6.1. Theorem. Let a function y of x be implicitly described by f(xz,y) = ¢. Then prove

that
d ©
mE=-—%.
(2> @ - _fx:p(fy)2 - 2fa:yfmfy + fyy(fm)Q
da® ()" |

Proor. We know that f is a function of x and y. Also, y is an implicit function of x. So,
f is a composite function of x. Hence, differentiating the equation f(z,y) = ¢ with respect
to x, we get,

d d d of ,
Ofde  Ofdy __ OF OTdy _ B _ 5 _ Jo

drdx ' Oydr Or  Oydx dx g—g __fy'

This proves (1).

Now we prove (2).

_ _fy%(fz) - fz%(fy)

(7,
5 (20D + £00%) - 5 (800 + &)%)
o Bk
fo (fert o () = o (e + 0 (£2))
o ()

— _fm(fy)Q B fyfxfxy - fxfyfyw + fyy(fa:)z
(fy)?
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_fx:p(fy)2 - fofyfzy + fyy(fm)2
(fy)? '

6.2. Example. Find % when
(1) zsin(x —y) — (xr +y) = 0. (2) z¥ =y~

PRroOF. (1) Let f(x,y) = xsin(z—y)—(x+y). Since f(z,y) = 0, by the previous theorem,
we have,

dy  f.  wcos(z —y)+sin(z—y)—1
dr — f, weos(z—y)(—1)—1
xcos(x —y) +sin(x —y) — 1

zeos(zx —y)+1

(2) Let f(z,y) = 2¥ — y*. Since f(z,y) = 0, by the previous theorem, we have,
dy  fo yz?~ ' —y"logy  y"logy — ya¥!

dr — f, wvlogx —xy*=t  avlogax — xy*—1’

6.3. Example. If z = xyf(¥) and z is constant, then show that
f1(4) _ aly +ag!]
1) ly— o]
SOLUTION. Let F(z,y) = zyf(%). Then F(x,y) = z, z is constant. Thus y is an implicit
function of z. So,

OF O0F dy
Now differentiating F'(z,y) with respect to x, we get,
OF _ v 10y (B oy~ Yy = Y T p(y o
=@ oyl (B (= 5) =w B = L@ = Llefn) —yr )]
Similarly,

(6.3.1)

G = ol )+ auf () = of () + uf (2)

Putting these values in (6.3.1), we have,

Y af ()~ ()] + ) s ()%~

dx
d d
= [y af] s =2 [y-o% | re
P a[y+a
I Ty |y o
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6.4. Example. If A, B and C are angles of a AABC' such that

22 102 i 02 _ dB __ tanC—tan A
sin® A + sin” B + sin” C' = K, a constant, then prove that §2 = ===,

SOLUTION. Clearly, A+ B+C =m. So, A=m— (B+C). Therefore, sin A = sin(B+ C).
Let f(B,C) = sin*(B+C) +sin? B +sin* C — K. Hence f(B,C) =0, i.e., B is an implicit
function of C'. So, Z—g = —;—C. Also,
B

_of
- OB
= 2sin(B + C) cos(B + C') + 2sin B cos B
=sin2(B + C) +sin2B
= sin(27m — 2A4) 4 sin 2B
= —sin2A +sin2B
=2cos(B + A)sin(B — A)
= 2cos(m — C)sin(B — A)
= —2cosC'sin(B — A)
= 2cosC'sin(A — B).

/B

Similarly, we get,
fo =2cos Bsin(A — C).
Hence,
dB  cos Bsin(A—C)
dC'~  cosCsin(A — B)
cos B(sin A cos C' — cos Asin C)
~ cos C'(sin A cos B — cos Asin B))
~ sinAcos BcosC — cos Acos BsinC
~ sin A cos Bcos C — cos Asin Bcos C

Dividing by cos A cos B cos C', we get,
dB __ __tanA—tanC __ tanC—tanA
dC ~—  tanA—tanB = tanA—tan B’

hodododododhodd



